top of page

PUBLICATIONS

“The joy of discovery is certainly the liveliest that the mind of man can ever feel”

- Claude Bernard -

Journal Publications
(Updated: Oct, 16th, 2024)

27. Oliveira, M., Galarza, C.E., Prates, O.M. and Lachos, V. H. (2024+).  Influence diagnostics in Heckman selection-t model. Journal of Applied Statistics (revision invited).

​

26. Ordoñez, J., Galarza, C.E. and Lachos, V. H. (2024). CensSpatial: An R Package for Estimation and Diagnostics in Spatial Censored Regression Models. SoftwareX, Vol 27, 101762.

​

25. Valeriano. K.L., Schumacher, F.L., Galarza, C.E. and Matos, L.A. (2024). Censored autoregressive regression models with Student-t innovations. The Canadian Journal of Statistics, 52: 804-828. 

​

24. Valeriano, K.L.,  Galarza, C.E., Matos, L.A. and Lachos, V.H. (2023). Likelihood-based inference for multivariate skew-t censored regression with censored or missing responses. Journal of Multivariate Analysis, Vol. 196, 105174.

​

23. Valeriano. K.L., Galarza, C.E. and Matos, L.A. (2023). Moments and random number generation for the truncated elliptical family of distributions. Statistics and Computing. DOI: 10.1007/s11222-022-10200-4.

​

22. Galarza, C.E., Matos, L.A. and Lachos, V.H. (2022). An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses. Metron, 80, 231–253. DOI: 10.1007/s40300-021-00227-4.

​

21. Galarza, C.E., Lachos, V. H. and Matos, L. A. (2022). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distributionJournal of Multivariate Analysis, (189), 104944.

​

20. Ordoñez, J., Galarza, C.E. and Lachos, V. H. (2022). An R package for censored spatial data analysis. Medwave. 22(S1): eCI54. DOI: 10.5867/Medwave.2022.S1.CI54.

​

19. Galarza C.E., Matos L.A., Dey D.K. and Lachos V.H. (2021)  On moments of folded and doubly truncated multivariate extended skew-normal distributions. Journal of Computational and Graphical Statistics. DOI: 10.1080/10618600.2021.2000869.

​

18. De Alencar F.H, Galarza, C.E.  Matos, L.A. and Lachos V.H. (2021). Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution. Advances and Data Analysis and Classification.  DOI: 10.1007/s11634-021-00448-5.

​

17. Galarza C.E., Lachos V.H. and Bourgingnon M. (2021) A skew-t quantile regression for censored and missing data.  STAT.  e379. DOI: 10.1002/sta4.379.

​

16. Galarza C.E., Lachos V.H, Tsung-I, L. and Wan-Lun, W. (2021) On moments of folded and truncated multivariate Student-t distributions based on recurrence relationsMetrika, 84, 825–850. DOI: 10.1007/s00184-020-00802-1.

​

15. Lemus, M.N., Lachos V.H., Galarza, C.E. and Matos L.A. (2021) Estimation and diagnostics for partially censored regression models based on heavy-tailed distributionsStatistics and Its Interface, 14(2), 165-182.

​

14. Gallardo. D., Bourgingnon M., Galarza C.E., and Gómez H. (2020) A parametric quantile regression model for asymmetric response variables on the real line. Symmetry, (12), 1938. 

​

13. Galarza C.E., Lachos V.H. and Panpan Z. (2020) Logistic quantile regression for bounded outcomes using a family of heavy-tailed distributions. Sankhya B. DOI: 10.1007/s13571-020-00231-0.

​

12. Galarza, C.E., Castro, LM. Louzada, F. and V. H. Lachos (2018) Quantile Regression for Nonlinear Mixed Effects Models: A Likelihood Based Perspective. Statistical Papers. DOI: 10.1007/s00362-018-0988-y.

​

11. Galarza, C.E., V. H. Lachos, Cabral, CRB. and Castro L.M. (2017) Robust Quantile Regression using a Generalized Class of Skewed Distributions. Stat. DOI: 10.1002/sta4.140.

​

10. Galarza, C.E., Bandyopadhyay, D. and V. H. Lachos (2017) Quantile Regression for Linear Mixed Models: A Stochastic Approximation EM approach. Statistics and its interface. Volume 10(3): 471 – 482.

​

9. Gonzalez-López, V.A., Galarza, C.E., Gholizadeh, R. (2016). E-Bayesian Estimation for System Reliability and Availability Analysis based on Exponential Distribution. Communications in Statistics: Simulation and Computation. DOI: 10.1080/03610918.2016.1202269.

​

8. Galarza, C.E. and V. H. Lachos (2015) Classical Inference for Quantile Regression Nonlinear Mixed Effects Models. Estadistica (Inter-American Statistical Institute). Vol. 67 N188-189.

Edited Image 2016-05-05 05-51-34_edited_
Collaboratory

7. Valenzuela-Hormazabal, P., Galarza, C.E., Morales, N., Leddermann, V., Bustos, D., et.al. (2024). Unveiling Novel Urease Inhibitors for Helicobacter pylori: A Multi-Methodological Approach from Virtual Screening and ADME to Molecular Dynamics Simulations. International Journal of Molecular Sciences, 25(4), 1968.

​

6. Velastegui, A., Guerrero, G., Marquez, J. O., El Imanni, H. S., Galarza, C.E., and Hidalgo, J. (2023). Geospatial Analysis of Guayaquil’s Sound Landscape After the Covid-19 Isolation Period. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 2504-2507). IEEE.

​

5. Yáñez O., Alegría M., Suardiaz R., Morales L., Castro R.I., Palma J.M., Galarza C.E., Catagua A., Rojas V., Urra G., et al. Calcium-Alginate-Chitosan Nanoparticle as a Potential Solution for Pesticide Removal, a Computational Approach. Polymers. 2023; 15(14):3020.

​

4. Bustos, D., Galarza, C.E., Ordoñez, W., Brauchi, S. and Benso, B. (2023). A cost-effective pipeline for a rational design and selection of capsaicin analogs targeting TRPV1 channels. American Chemical Society (ACS) Omega 8, 13, 11736–11749.

​

3. Galarza, C.E., Palma, J.M., Morais, C.F., Utria J. and Carvalho, L.P. (2021) A Novel Probabilistic Model for Opportunistic Routing and Applications with Computation of Energy Consumption in WSNSensors 21 (23), 8058.

​

2. Palma, J.O., De Paula, C.L., Gonçalves, A.C., Galarza, C.E. and De Oliveira, A.M. (2016) Network Control System Application: Minimization of global number of interactions, transmissions and receptions in a Multi-Hop network using Discrete-Time Markovian Jump Linear Systems. IEEE Latin American Transactions 14(6): 2675-2680. DOI: 10.1109/TLA.2016.7555237

​

1. Palma, J.O., De Paula, C.L., Gonçalves, A.C., Galarza, C.E. and De Oliveira, A.M. (2015) Application of Control Theory Markov Systems to Minimize the Number of Transmissions in a Multi-hop Network. IEEE Computer Aided System Engineering (APCASE), 2015 Asia-Pacific Conference on. DOI: 10.1109/APCASE.2015.59.

R software packages
  1. HeckmanEMFit Normal or Student-t Heckman Selection Models (2023). Prates M., Lachos V.H., Dipak D,  Oliveira M., Galarza, C.M., and Loor, K.
     

  2. RcppCensSpatialSpatial Estimation and Prediction for Censored/Missing Responses (2021). Loor, K., Ordoñez, A., Galarza, C.M., and Matos, L.A.
     

  3. rellipticalThe Truncated Elliptical Family of Distributions (2021). Loor, K., Galarza, C.M., and Matos, L.A.
     

  4. CensMFM: Finite Mixture of Multivariate Censored/Missing Data (2019). De Alencar, H.F., Avila, L., Galarza, C.M. and V. H. Lachos.​
     

  5. MomTrunc: Moments of Folded and Doubly Truncated Multivariate Distributions (2019). Galarza, C.M. and V. H. Lachos.
     

  6. PartCensReg: Partially Censored Regression Models Based on Heavy-Tailed Distributions (2018).  Lemus M.N, Galarza, C.M., Matos, L.A. and V. H. Lachos.
     

  7. OpportunisticRouting Distribution, Broadcasts, Transmissions and Receptions in an Opportunistic Network (2017).  Galarza, C.M. and Palma, J.O.​
     

  8. CensSpatialCensored Spatial Models (2016). Ordoñez, A., Galarza, C.M., and V. H. Lachos.​
     

  9. endtoendTransmissions and Receptions in a End to End  Network (2016). Galarza, C.M. and Palma, J.O.​
     

  10. ARCensRegFitting Univariate Censored Linear Regression Model with Autoregressive Errors (2016). Schumacher L. F., Galarza, C.M., and V. H. Lachos.
     

  11. lqrRobust Linear Quantile Regression (2016). Galarza, C.M., Benites, L. and V. H. Lachos.​
     

  12. hopbyhopTransmissions and Receptions in a Hop by Hop Network (2016). Galarza, C.M. and Palma, J.O.
     

  13. aldThe Asymmetric Laplace Distribution (2015). Galarza, C.M., and V. H. Lachos.​
     

  14. qrNLMM: Quantile Regression for Nonlinear Mixed-Effects Models (2015). Galarza, C.M., and V. H. Lachos.
     

  15. qrLMM:  Quantile Regression for Linear Mixed-Effects Models (2015). Galarza, C.M., and V. H. Lachos.​
     

  16. ALDqrQuantile Regression Using Asymmetric Laplace Distribution (2015). Benites, L., Galarza, C.M. and V. H. Lachos

    TEMP LINKS

Some secret content here!

bottom of page